Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Journal of Medicinal and Chemical Sciences ; 6(9):1935-1942, 2023.
Article in English | Scopus | ID: covidwho-20238710

ABSTRACT

Transmission prevention is important to prevent the spread of COVID-19. Although most cases are transmitted through droplets and aerosols, several studies have shown the possibility of transmission through fecal material. It is important to identify which patients are more likely to shed SARS-CoV-2 to raise awareness of the virus transmission via their feces. This study aims to determine the association of clinical and laboratory characteristics of COVID-19 patients with the SARS-CoV-2 detection in feces. From May to December 2020, fecal specimens from confirmed COVID-19 patients were collected, processed, and tested for the SARS-CoV-2 RNA presence. Clinical and laboratory parameters were compared between patients with and without SARS-CoV-2 RNA in their feces. Categorical variables were analyzed using Chi-square or Fisher's Exact test, whereas non-categorical variables were analyzed using Independent T test and Mann-Whitney U test. From 51 COVID-19 patients of whom fecal specimen were collected, SARS-CoV-2 RNA was found in the feces of 26 (50.9%). The SARS-CoV-2 presence in the feces was associated with cough (p=0.002), dyspnea (p=0.017), bilateral pneumonia (p=0.011), lower SARS-CoV-2 CT-values in nasopharyngeal and oropharyngeal swabs (p=0.015), and clinical severity (p=0.0023). In conclusion, several clinical characteristics contributing to the COVID-19 severity and higher SARS-CoV-2 viral load in the respiratory tract were associated with the SARS-CoV-2 RNA detection in feces. © 2023 by SPC (Sami Publishing Company).

2.
International Journal of Pharmaceutical and Clinical Research ; 15(5):534-542, 2023.
Article in English | EMBASE | ID: covidwho-20232504

ABSTRACT

Background: The coronavirus disease (COVID-19) was a pandemic which spread to various countries and originated in Wuhan, China. For appropriate response, planning, and allocation of resources demographic data play an important role in understanding the impact of COVID-19 across the country. Aim(s): To estimate epidemiological and demographic parameters like age, sex, area, sample type etc. of samples reported in COVID-19 diagnostic laboratory of RUHS College of Medical Sciences, Jaipur, Rajasthan. Material(s) and Method(s): The study was conducted retrospectively in a tertiary care hospital at Jaipur. Data like age, gender, urban or rural, IPD/ICU or OPD etc. were collected between January 1, 2021 to June 30, 2021. The collected data were expressed in number, counts and percentage. The data of six months were analysed using Microsoft Excel. Result(s): From January to June 2021, April and May 2021 showed highest positivity 13084 (27.42%) and 10968 (23.06%) respectively. February 2021 and June 2021 showed least positivity 156 (2.39%) and 163 (0.8%) respectively. Total COVID-19 positive cases during 6 months were 25134 and deaths were 357 with highest deaths were during May 2021 (n=270). Males (64.28% to 72.20%) were affected most. In April and May 2021 positivity in urban area was 6053 (46.26%) and 5712 (52.07%) respectively, while in rural area 7031 (53.74%) and 5256 (47.93%) respectively. The positivity in OPD patient during April and May was 93.58% (12245) and 95.26 % (10449) respectively. Nineteen to forty years was most affected age group. Conclusion(s): During second wave both urban and rural population was affected. Males and working age group were affected more. Among COVID-19 suspects' positivity rate was low in IPD patients as compared to OPD patients. Critical factors for an effective public health response are surveillance and contact tracing.Copyright © 2023, Dr Yashwant Research Labs Pvt Ltd. All rights reserved.

3.
Front Microbiol ; 14: 1129259, 2023.
Article in English | MEDLINE | ID: covidwho-20243421

ABSTRACT

Orchids are significant ornamental plants whose viral infection results in substantial economic damage. Cymbidium mosaic virus (CymMV), Odontoglossum ringspot virus (ORSV), and Cymbidium ringspot virus (CymRSV) represent three important and prevalent orchid viruses. The detection system proposed in this study uses a triplex TaqMan quantitative real-time PCR assay to identify CymMV, ORSV, and CymRSV in a simultaneous manner. We designed specific primers and probes for CymMV, ORSV, and CymRSV, with amplified sequences of 156 bp, 148 bp, and 145 bp, respectively. The minimum detection limit of the triplex qRT-PCR assay for CymMV and CymRSV was 1 copy/assay, and the minimum detection limit was 10 copies/assay for ORSV. The minimum stable detection limits for CymMV, ORSV, and CymRSV were 10, 102, and 102 copies/assay, respectively. Therefore, this system exhibited higher sensitivity (approximately 10 to 104-fold) than RT-PCR. The intra-and interassay CVs of Cq values are less than 0.55 and 0.95%, respectively, indicating that the triplex assay is highly reliable and accurate. In addition, 66 samples from five different orchid genera were analyzed using the established assay and gene chip. The detection results demonstrated that the triplex probe qRT-PCR demonstrated higher sensitivity than the gene chip, indicating that the triplex real-time PCR assay could be used for the detection of field samples. Our findings suggest that the triplex real-time RT-PCR detection system represents a rapid, simple, and accurate tool for detecting CymMV, ORSV, and CymRSV on orchids.

4.
5.
Data Brief ; 49: 109312, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20233818

ABSTRACT

The SARS-CoV-2 virus has evolved throughout the pandemic and is likely to continue evolving into new variants. Some of these variants may affect functional properties, including infectivity, interactions with host immunity, and disease severity. And compromised vaccine efficacy is an emerging concern with every new viral variant. Next-generation sequencing (NGS) has emerged as the tool of choice for discovering new variants and understanding the transmission dynamics of SARS-CoV-2. Deciphering the SARS-CoV-2 genome has enabled epidemiological survivance and forecast of altered etiologically. Clinical presentations of the infection are influenced by comorbidities such as age, immune status, diabetes, and the infecting variant. Thus, clinical management and vaccine efficacy may differ for new variants. For example, some monoclonal antibody treatments are variant-specific, and some vaccines are less efficacious against the omicron and delta variants of SARS-CoV-2. Consequently, determining the local outbreaks and monitoring SARS-CoV-2 Variants of Concern (VOC) is one of the primary strategies for the pandemic's containment. Although next-generation sequencing (NGS) is a gold standard for genomic surveillance and variant discovery, the assays are not approved for variant diagnosis for clinical decision-making. Advanta Genetics, Texas, USA, optimized Illumina COVID-seq protocol to reduce cost without compromising accuracy and validated the Illumina COVID-Seq assay as a Laboratory Developed Test (LDT) according to the guidelines prescribed by the College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA). The whole genome of the virus was sequenced in (n = 161) samples from the East Texas region using the Illumina MiniSeq® instrument and analyzed by using Illumina baseSpace (https://basespace.illumina.com) bioinformatics pipeline. Briefly, the library was prepared by using Illumina COVIDSeq research use only (RUO) kit, and the individual libraries were normalized using the DNA concentration measured by Qubit Flex Fluorometer, and the pooled libraries were sequenced on Illumina MiniSeq® Instrument. Illumina baseSpace application was used for sequencing QC, FASTQ generation, genome assembly, and identification of SARS-CoV-2 variants. This whole genome shotgun project (n = 161) has been deposited at GISAID.

6.
J Clin Virol Plus ; 3(1): 100132, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-20232657

ABSTRACT

The emergence of SARS-CoV-2 has caused worldwide pandemic of COVID-19. Infection is difficult to diagnose early as some patients remain asymptomatic and may carry this virus to other people. Currently, qRT-PCR is the widely accepted mode for detection. However, the need for sophisticated instrument and trained personnel may hinder its application, especially in remote and facility-lacking areas. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) may serve as a potential approach for detection of SARS-CoV-2 as the resources needed in its application is far less complex than those of qRT-PCR. Herein, we evaluated RT-LAMP based analytical method (COVIDNow), relative to qRT-PCR, in detecting SARS-CoV-2 by using 63 clinical respiratory samples. Based on our finding, COVIDNow exhibited sensitivity and specificity values of 87.5% and 80.6%, respectively. Taken together, RT-LAMP based detection of SARS-CoV-2 by utilizing COVIDNow might serves as a valuable diagnostic tool in the management of global COVID-19 pandemic condition.

7.
Clin Chim Acta ; 547: 117415, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20230697

ABSTRACT

BACKGROUND: Great concerns have been raised on SARS-CoV-2 impact on men's andrological well-being, and many studies have attempted to determine whether SARS-CoV-2 is present in the semen and till now the data are unclear and somehow ambiguous. However, these studies used quantitative real-time (qRT) PCR, which is not sufficiently sensitive to detect nucleic acids in clinical samples with a low viral load. METHODS: The clinical performance of various nucleic acid detection methods (qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH) was assessed for SARS-CoV-2 using 236 clinical samples from laboratory-confirmed COVID-19 cases. Then, the presence of SARS-CoV-2 in the semen of 12 recovering patients was investigated using qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH in parallel using 24 paired semen, blood, throat swab, and urine samples. RESULTS: The sensitivity and specificity along with AUC of CBPH was markedly higher than the other 3methods. Although qRT-PCR, OSN-qRT-PCR and cdPCR detected no SARS-CoV-2 RNA in throat swab, blood, urine, and semen samples of the 12 patients, CBPH detected the presence of SARS-CoV-2 genome fragments in semen samples, but not in paired urine samples, of 3 of 12 patients. The existing SARS-CoV-2 genome fragments were metabolized over time. CONCLUSIONS: Both OSN-qRT-PCR and cdPCR had better performance than qRT-PCR, and CBPH had the highest diagnostic performance in detecting SARS-CoV-2, which contributed the most improvement to the determination of the critical value in gray area samples with low vrial load, which then provides a rational screening strategy for studying the clearance of coronavirus in the semen over time in patients recovering from COVID-19. Although the presence of SARS-CoV-2 fragments in the semen was demonstrated by CBPH, COVID-19 is unlikely to be sexually transmitted from male partners for at least 3 months after hospital discharge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , SARS-CoV-2/genetics , COVID-19/diagnosis , Semen/chemistry , COVID-19 Testing , Real-Time Polymerase Chain Reaction/methods , RNA, Viral/genetics
8.
J Travel Med ; 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2318201

ABSTRACT

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect SARS-CoV-2 on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel qRT-PCR measurements on 482 surface samples taken from actively used trams, buses, metro trains, and platforms between 7-9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 hours. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses, and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.

9.
Omics Approaches and Technologies in COVID-19 ; : 239-242, 2022.
Article in English | Scopus | ID: covidwho-2297453

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused unparalleled global threat in terms of public health and economic loss. To date, there is no effective way of treating this disease, and the only way to control this disease is the extensive diagnosis of COVID-19 symptomatic patients and isolate them from the healthy population and treat them with appropriate medicine. There is a requirement of a global standard diagnosis method to quickly control this pandemic disease, which should be specific, easy to use, and inexpensive and requires least instrumentation at point-of-care testing (POCT). Serology-based tests are popular, inexpensive, and easy to use to diagnose COVID-19 patients, but they lack sensitivity at lower inoculum concentrations and may indicate false negatives which possess a major threat in spreading this pandemic disease. To avoid this issue, nucleic acid-based tests are more specific and sensitive to diagnose COVID-19 patients. However, it has some limitations such as a low sample throughput, expensive reagents, an extensive time, and requirement of costly quantitative reverse transcription–polymerase chain reaction instruments. To overcome this limitation, the latest CRISPR-based detection methods coupled with allied isothermal nucleic acid amplification methods such as loop-mediated isothermal amplification would provide inexpensive, quick, accurate, and easy ways of diagnosing a large number of populations at POCT. Here, we discuss some of the promising CRISPR-based assays which have the potential to transform COVID-19 diagnosis globally and curb this pandemic disease in the shortest possible time. © 2023 Elsevier Inc. All rights reserved.

10.
Cureus ; 15(3): e36773, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2294240

ABSTRACT

Objectives During the COVID-19 pandemic, several laboratories used different RNA extraction methods based on the resources available. Hence this study was done to compare the Ct values in qRT-PCR, time taken (sample processing-loading to PCR), manpower requirement, and cost of consumables between manual and automated methods. Materials and methods A cross-sectional study was done on 120 nasopharyngeal/oropharyngeal swabs received in VRDL for RT-PCR testing. Based on the results of automated RNA extraction (Genetix, HT 96 Purifier) and RT-PCR (Trivitron PCR Kit) detecting E gene (screening) and ORF gene (confirmatory), the division into Group- I (Ct 15-22), Group- II (Ct 23-29), Group-III (Ct 30-36) and Group-IV (Ct >36) was done. Manual RNA extraction was done using magnetic beads (Lab system, Trivitron). Statistical analysis Data were analyzed by SPSS 19.0 version software. Ct values obtained in the two methods were compared by paired t-test, GroupWise. Z test was used to compare the other parameters. Results The difference in Ct values for target genes was statistically significant (p<0.05) in Group-I to III; however, no variation in result interpretation. The difference in time, manpower, and cost were statistically significant (p<0.05). The manual method required twice more manpower; 40 minutes more time & automated method cost 3.5 times more for consumables. Conclusion The study showed that RNA yield was better with automated extraction in comparison to manual extraction. The samples extracted by the automated method detected the virus at a lower Ct range by PCR than the manual method. Automated method processed samples in less time and with less manpower. Considering the cost factor, manual extraction can be preferred in resource-limited settings as there was no difference in the results of the test. The manual method requires more hands-on time with potential chances of cross-contamination and technical errors.

11.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2288300

ABSTRACT

The COVID-19 pandemic has caused an unprecedented health and economic crisis, highlighting the importance of developing new molecular tools to monitor and detect SARS-CoV-2. Hence, this study proposed to employ the carrageenan extracted from Gigartina skottsbergii algae as a probe for SARS-CoV-2 virus binding capacity and potential use in molecular methods. G. skottsbergii specimens were collected in the Chilean subantarctic ecoregion, and the carrageenan was extracted -using a modified version of Webber's method-, characterized, and quantified. After 24 h of incubation with an inactivated viral suspension, the carrageenan's capacity to bind SARS-CoV-2 was tested. The probe-bound viral RNA was quantified using the reverse transcription and reverse transcription loop-mediated isothermal amplification (RT-LAMP) methods. Our findings showed that carrageenan extraction from seaweed has a similar spectrum to commercial carrageenan, achieving an excellent proportion of binding to SARS-CoV-2, with a yield of 8.3%. Viral RNA was also detected in the RT-LAMP assay. This study shows, for the first time, the binding capacity of carrageenan extracted from G. skottsbergii, which proved to be a low-cost and highly efficient method of binding to SARS-CoV-2 viral particles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Carrageenan/chemistry , Molecular Probes , Pandemics , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
12.
Viruses ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2287279

ABSTRACT

Due to the rapid mutation of porcine epidemic diarrhea virus (PEDV), existing vaccines cannot provide sufficient immune protection for pigs. Therefore, it is urgent to design the affinity peptides for the prevention and control of this disease. In this study, we made use of a molecular docking technology for virtual screening of affinity peptides that specifically recognized the PEDV S1 C-terminal domain (CTD) protein for the first time. Experimentally, the affinity, cross-reactivity and sensitivity of the peptides were identified by an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR) test, separately. Subsequently, Cell Counting Kit-8 (CCK-8), quantitative real-time PCR (qRT-PCR), Western blot and indirect immunofluorescence were used to further study the antiviral effect of different concentrations of peptide 110766 in PEDV. Our results showed that the P/N value of peptide 110766 at 450 nm reached 167, with a KD value of 216 nM. The cytotoxic test indicated that peptide 110766 was not toxic to vero cells. Results of the absolute quantitative PCR revealed that different concentrations (3.125 µM, 6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 µM, 200 µM) of peptide 110766 could significantly reduce the viral load of PEDV compared with the virus group (p < 0.0001). Similarly, results of Western blot and indirect immunofluorescence also suggested that the antiviral effect of peptide 110766 at 3.125 is still significant. Based on the above research, high-affinity peptide 110766 binding to the PEDV S1-CTD protein was attained by a molecular docking technology. Therefore, designing, screening, and identifying affinity peptides can provide a new method for the development of antiviral drugs for PEDV.


Subject(s)
Porcine epidemic diarrhea virus , Chlorocebus aethiops , Animals , Swine , Spike Glycoprotein, Coronavirus/genetics , Molecular Docking Simulation , Vero Cells , Peptides/pharmacology , Antiviral Agents/pharmacology , Real-Time Polymerase Chain Reaction
13.
Front Vet Sci ; 10: 1158585, 2023.
Article in English | MEDLINE | ID: covidwho-2268915

ABSTRACT

Currently, porcine coronaviruses are prevalent in pigs, and due to the outbreak of COVID-19, porcine coronaviruses have become a research hotspot. porcine epidemic diarrhea virus (PEDV), Transmissible Gastroenteritis Virus (TGEV), and Porcine Deltacoronavirus (PDCoV) mentioned in this study mainly cause diarrhea in pigs. These viruses cause significant economic losses and pose a potential public health threat. In this study, specific primers and probes were designed according to the M gene of PEDV, the S gene of TGEV, and the M gene of PDCoV, respectively, and TaqMan probe-based multiplex real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was developed for the simultaneous detection of PEDV, TGEV, and PDCoV. This method has high sensitivity and specificity, and the detection limit of each virus can reach 2.95 × 100 copies/µl. An assay of 160 clinical samples from pigs with diarrhea showed that the positive rates of PEDV, TGEV, and PDCoV were 38.13, 1.88, and 5.00%; the coinfection rates of PEDV+TGEV, PEDV+PDCoV, TGEV+PDCoV, PEDV+TGEV+PDCoV were 1.25, 1.25, 0, 0.63%, respectively. The positive coincidence rates of the multiplex qRT-PCR and single-reaction qRT-PCR were 100%. This method is of great significance for clinical monitoring of the porcine enteric diarrhea virus and helps reduce the loss of the breeding industry and control the spread of the disease.

14.
Genes Genomics ; 44(5): 617-628, 2022 05.
Article in English | MEDLINE | ID: covidwho-1838428

ABSTRACT

BACKGROUND: Since COVID-19 was declared the pandemic by the WHO, it has continued to spread. There is a need for rapid, efficient, and accurate diagnostic kits and techniques to control its spread. OBJECTIVE: The diagnostic capability of the qRT-PCR-based Real-Q 2019-nCoV Detection Kit and dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit was compared and evaluated. METHODS: Diagnostic tests for COVID-19 were performed using two different COVID-19 kits and 301 individual specimens with confirmed COVID-19 positive/negative at the government-accredited medical institution. Assessment of diagnostic capability was measured through diagnostic sensitivity, specificity, Cohen's Kappa coefficient, and dilutional linearity tests. RESULTS: The COVID-19 diagnostic test results using two kits and 301 individual specimens perfectly matched the pre-diagnosis results of the medical institution. In addition, the measurement results of diagnostic sensitivity and specificity were "1", indicating high diagnostic capability. Cohen's Kappa coefficient value is "1", which means that the diagnosis concordance between the two kits is "Almost Perfect". As a result of dilutional linearity tests to evaluate their detection capability, both kits were measured with very high detection reliability. CONCLUSION: Here, we propose that the dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit has the advantages of the dPCR method reported in the previous study and is suitable for point-of-care testing (POCT) by overcoming the limitations of space, test time, cross-over contamination, and biosafety due to omitting RNA extraction process.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Point-of-Care Systems , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
15.
J King Saud Univ Sci ; 35(3): 102540, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165597

ABSTRACT

Background: A new coronavirus was identified in Jeddah, Saudi Arabia in 2012 and designated as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). To date, this virus has been reported in 27 countries. The virus transmission to humans has already been reported from camels. Currently, there is no vaccine or antiviral therapy available against this virus. Methods: The siRNAs were in silico predicted, designed, and chemically synthesized by using the MERS-CoV-orf1ab region as a target. The antiviral activity was experimentally evaluated by delivering the siRNAs with Lipofectamine™ 2000 and JetPRIMER as transfection reagents in both Vero cell and HEK-293-T cell lines at two different concentrations (10.0 nM and 5.0 nM). The Ct value of quantitative Real-Time PCR (qRT-PCR) was used to calculate and determine the reduction of viral RNA level in both cell supernatant and cell lysate isolated from both cell lines. Results: The sequence alignment resulted in the selection of highly conserved regions. The orf1ab region was used to predict and design the siRNAs and a total of twenty-one siRNAs were finally selected from four hundred and twenty-six siRNAs generated by online software. Inhibition of viral replication and significant reduction of viral RNA was observed against selected siRNAs in both cell lines at both concentrations. Based on the Ct value, the siRNAs # 11, 12, 18, and 20 were observed to be the best performing in both cell lines at both concentrations. Conclusion: Based on the results and data analysis, it is concluded that the use of two different transfection reagents was significantly effective. But the Lipofectamine™ 2000 was found to be a better transfection reagent than the JetPRIMER for the delivery of siRNAs in both cell lines.

16.
Current Bioinformatics ; 17(7):586-598, 2022.
Article in English | EMBASE | ID: covidwho-2141263

ABSTRACT

Objectives: Ganoderic acid Me [GA-Me], a major bioactive triterpene extracted from Ganoderma lucidum, is often used to treat immune system diseases caused by viral infections. Although triterpenes have been widely employed in traditional medicine, the comprehensive mechanisms by which GA-Me acts against viral infections have not been reported. Sendai virus [SeV]-infected host cells have been widely employed as an RNA viral model to elucidate the mechanisms of viral infection. Method(s): In this study, SeV-and mock-infected [Control] cells were treated with or without 54.3 muM GA-Me. RNA-Seq was performed to identify differentially expressed mRNAs, followed by qRT-PCR validation for selected genes. GO and KEGG analyses were applied to investigate potential mechanisms and critical pathways associated with these genes. Result(s): GA-Me altered the levels of certain genes' mRNA, these genes revealed are associated pathways related to immune processes, including antigen processing and presentation in SeV-infected cells. Multiple signaling pathways, such as the mTOR pathway, chemokine signaling pathway, and the p53 pathways, significantly correlate with GA-Me activity against the SeV infection process. qRT-PCR results were consistent with the trend of RNA-Seq findings. Moreover, PPI network analysis identified 20 crucial target proteins, including MTOR, CDKN2A, MDM2, RPL4, RPS6, CREBBP, UBC, UBB, and NEDD8. GA-Me significantly changed transcriptome-wide mRNA profiles of RNA polymerase II/III, protein posttranslational and immune signaling pathways. Conclusion(s): These results should be further assessed to determine the innate immune response against SeV infection, which might help in elucidating the functions of these genes affected by GA-Me treatment in virus-infected cells, including cells infected with SARS-CoV-2. Copyright © 2022 Bentham Science Publishers.

17.
Microbiol Spectr ; : e0165622, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2117157

ABSTRACT

Selection of reference genes during real-time quantitative PCR (qRT-PCR) is critical to determine accurate and reliable mRNA expression. Nonetheless, not a single study has investigated the expression stability of candidate reference genes to determine their suitability as internal controls in SARS-CoV-2 infection or COVID-19-associated mucormycosis (CAM). Using qRT-PCR, we determined expression stability of the nine most commonly used housekeeping genes, namely, TATA-box binding protein (TBP), cyclophilin (CypA), ß-2-microglobulin (B2M), 18S rRNA (18S), peroxisome proliferator-activated receptor gamma (PPARG) coactivator 1 alpha (PGC-1α), glucuronidase beta (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT-1), ß-ACTIN, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in patients with COVID-19 of various severities (asymptomatic, mild, moderate, and severe) and those with CAM. We used statistical algorithms (delta-CT [threshold cycle], NormFinder, BestKeeper, GeNorm, and RefFinder) to select the most appropriate reference gene and observed that clinical severity profoundly influences expression stability of reference genes. CypA demonstrated the most consistent expression irrespective of disease severity and emerged as the most suitable reference gene in COVID-19 and CAM. Incidentally, GAPDH, the most commonly used reference gene, showed the maximum variations in expression and emerged as the least suitable. Next, we determined expression of nuclear factor erythroid 2-related factor 2 (NRF2), interleukin-6 (IL-6), and IL-15 using CypA and GAPDH as internal controls and show that CypA-normalized expression matches well with the RNA sequencing-based expression of these genes. Further, IL-6 expression correlated well with the plasma levels of IL-6 and C-reactive protein, a marker of inflammation. In conclusion, GAPDH emerged as the least suitable and CypA as the most suitable reference gene in COVID-19 and CAM. The results highlight the expression variability of housekeeping genes due to disease severity and provide a strong rationale for identification of appropriate reference genes in other chronic conditions as well. IMPORTANCE Gene expression studies are critical to develop new diagnostics, therapeutics, and prognostic modalities. However, accurate determination of expression requires data normalization with a reference gene, whose expression does not vary across different disease stages. Misidentification of a reference gene can produce inaccurate results. Unfortunately, despite the global impact of COVID-19 and an urgent unmet need for better treatment, not a single study has investigated the expression stability of housekeeping genes across the disease spectrum to determine their suitability as internal controls. Our study identifies CypA and then TBP as the two most suitable reference genes for COVID-19 and CAM. Further, GAPDH, the most commonly used reference gene in COVID-19 studies, turned out to be the least suitable. This work fills an important gap in the field and promises to facilitate determination of an accurate expression of genes to catalyze development of novel molecular diagnostics and therapeutics for improved patient care.

18.
BMC Genomics ; 23(1): 755, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116898

ABSTRACT

BACKGROUND: Since inception of the COVID-19 pandemic, early detection and isolation of positive cases is one of the key strategies to restrict disease transmission. Real time reverse transcription polymerase chain reaction (qRTPCR) has been the mainstay of diagnosis. Most of the qRTPCR kits were designed against the target genes of original strain of SARS-CoV-2. However, with the emergence of variant strains of SARS-CoV-2, sensitivity of the qRTPCR assays has reportedly reduced. In view of this, it is critical to continuously monitor the performance of the qRTPCR kits in the backdrop of variant strains of SARS-CoV-2. Real world monitoring of assay performance is challenging. Therefore, we developed a two-step in-silico screening process for evaluating the performance of various qRTPCR kits used in India. RESULTS: We analysed 73 qRT-PCR kits marketed in India, against the two SARS-CoV-2 VoCs. Sequences of both Delta (B.1.617.2) and Omicron (B.1.1.529) VoCs submitted to GISAID within a specific timeframe were downloaded, clustered to identify unique sequences and aligned with primer and probe sequences. Results were analysed following a two-step screening process. Out of 73 kits analysed, seven were unsatisfactory for detection of both Delta and Omicron VoCs, 10 were unsatisfactory for Delta VoC whereas 2 were unsatisfactory for only Omicron VoC. CONCLUSION: Overall, we have developed a useful screening process for evaluating the performance of qRTPCR assays against Delta and Omicron VoCs of SARS-CoV-2 which can be used for detecting SARS-CoV-2 VoCs that may emerge in future and can also be redeployed for other evolving pathogens of public health importance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , RNA, Viral/genetics , RNA, Viral/analysis , Sensitivity and Specificity , COVID-19/diagnosis , COVID-19/epidemiology
19.
Vet Sci ; 9(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116277

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/µL (final reaction concentration of 12.1 copies/µL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses.

20.
Viruses ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2116086

ABSTRACT

Background: The transmissible capacity and toxicity of SARS-CoV-2 variants are continually changing. We report here the follow-up study of hospitalized COVID-19 patients from 2020 to 2022. It is known that the PCR diagnosis for hospitalized patients sometimes causes confusion because of the incompatibility between their diagnosis and symptoms. We applied our sugar chain-immobilized gold-nanoparticles for the extraction and partial purification of RNA from specimens for quantitative RT-PCR assay and evaluated whether the results correlate with patients' symptoms. Methods and Results: Saliva specimens were taken from hospitalized patients with mild or moderate symptoms every early morning. At the time of RT-PCR diagnosis, two methods for the extraction and partial purification of RNA from the specimen were performed: a commonly used Boom (Qiagen) method and our original sugar chain-immobilized gold nanoparticle (SGNP) method. For symptoms, body temperature and oxygen saturation (SpO2) of patients were monitored every 4 h. Conclusions: It was clear that patients infected with the Delta variant needed more time to recover than those with the Omicron variant, and that the SGNP method showed more realistic correlation with the symptoms of patients compared with the common Qiagen method.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Reverse Transcriptase Polymerase Chain Reaction , Gold , SARS-CoV-2/genetics , Sugars , Follow-Up Studies , COVID-19/diagnosis , RNA, Viral/genetics , RNA, Viral/analysis , Sensitivity and Specificity , Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL